AD-AL94 029 ﬂ LINEAR-TINE ALGORITHN FOR FINDING R MININUM SPANNING /1
UD FDREST(U) PRINCETON UNIV NJ DEPT OF I:OHPUTE
H N GABON ET AL. JUL 87 CS-TR-188-87
I UMCLRSSIFIED N...14 87-K-9467 F/G 1274

- - -

: Lo e R e e e N S R R S R A A R N IR A A LA T R G R N Y T R LN TR S R N O I T T YT T I I YT ey ;‘1 ,' '.‘
.

™~

(
‘0

t

1.0 s b
g 5
ls = =

e
2 Ths e

MICROCOPY RESOLUTION TEST CHARY
JRFAL - ~TANDARDS 19634

AD-A194 023

VN U VRUNUSAOUNUSVAIUINAN R R, BRIV RV Y R AR YN Y NI BT g g SR avi - T

o1 FILE COPY ON

IT{ =]

A LINEAR-TIME ALGORITHM FOR FINDING
A MINIMUM SPANNING PSEUDOFOREST

- O
-

[ow |

Harold N. Gabow
Robert E. Tarjan

CS-TR-108-87

r:‘1

July 1987 '

f
>
oLl

ptiC_

%ELECTE e :
Department wno1¥Rnlg

o ~ =

of . D 3
Computer Science 3
Z

i 2

TIATACTITION STALZLRS . v
Approved for pudliz selaatd 'l
)

¢ A ta T lianibad
Dasibulica Unlimited

| e

' T oot Ka% a% s3%.0s oF8 a%0 o782 ¥ 2" " - i TR EANTR TR AR AR KR U AT G Y U TR T T e . T . . o

-
=’
LI

o

-

s T
i
{
! |
‘ []
i
}
i !
<
1
v
o -

Ve

SIS

A LINEAR-TIME ALGORITHM FOR FINDING
A MINIMUM SPANNING PSEUDOFOREST

Harold N. Gabow .‘ PWW e e

2

P

Robert E. Tarjan . . R B
T . &

'.-" o . i _-._‘ [

CS-TR~-108-87 . : o r B
o | 3

July 1987 ! ' ﬁ
iﬁ'/ : i : '

o o R

D""‘" -~)
2 e
ELECTE
JUNO 1 1988 2
(9 4% 3
D :

ALl

{v{-l”-‘

i
\

e e T N R

DETAIBUTICN STAT YT A

—

'
1

o

Approved for pubilic x.d as; |
Dmnbutxon Ur 1' o‘:.t:;l_w]

B

t 4
e

A

I?f’f:". ?_ f{

v

A Linear-Time Algorithm for Finding a Minimum Spanning Pseudoforest

Harold N. Gabow! Robert E. Tarjan?
Department of Computer Science Computer Science Department
University of Colorado Princeton University
Boulder, CO Princeton, NJ 08544
80309 and
AT&T Bell Laboratories
Murray Hill, NJ 07974
July, 1987
Abstract.

A psesdoforest is a graph each of whose connected components is a tree or a tree plus an edge; a
spenning paesdoforest of a graph contains the greatest number of edges possible. This paper shows
that a minimum cost spanning peeudoforest of a graph with n vertices and m edges can be found in
O(m + n) time. This implies that a minimum spanning tree can be found in O(m) time for graphs
'ithginhulestlogmnfornnemﬁ.

! Research supported in part by NSF Grant No. MCS-8302648 and AT&T Bell Laboratories.
2 Research supported in part by NSF Grant No. DCR-8605962 and ONR Contract No. N00014-
87-K-0467.

Lt 2 b LA™ Py

N =

T -

W AAAAANNY

a1 0y Y PN
WIVVNY iR

Gy
*

L & ¢

agagw
O

- s Fa A

~
)
A N o Y e A SN TN

P WU U PO A T AR PP WL T0 S K W W W WL/ LW UV U UV ON N U U UA DO U AT AR AR OO A Y

o 1. Introduction.

. A paesdotree is a connected graph with equal number of vertices and edges, i.e., a tree plus
::i an edge creating a cycle. A psesdoforest is & graph each of whose connected components has at
" least as many vertices as edges, i.c., each component is a tree or a peeudotree. Pseudoforests

" arise in many applications although the terminology is not standard. We use the terminology
5 of [PQ), which uses peeudoforests to compute the density and arboricity of a graph; see {W] for
5 refinements of this approach. Pseudotrees are essentially the 1-trees used in [HK] to solve the
: traveling salesman problem. The directed version of a pseudoforest is called a functional graph in

[Be}, since it corresponds to the graph of a finite function. For this reason pseudoforests commonly

;’.i arise in parallel processing, when each processor chooses a successor (e.g., [GPS]). The pseudoforests
1 of a graph form the bicircular matroid, which is important in the study of rigidity of bar-and-body
-J frameworks (WW). In the problem of minimum cost network flow with losses and gains [L}, a linear
i programming basis is a pseudoforest [D]. A pseudotree is also called a unicyclic groph [e.g., MH].
With these applications as motivation we propose the minimum spanning psesdoforest problem:
'

Consider a graph G with n vertices and m edges. A peeudoforest spans G if it has the greatest
possible number of edges. Assume every edge ¢ has a real-valued cost c(e). The cost of a set of
edges is the sum of all its edge costs. A minsmum spanning pseudoforest has the smallest cost
possible. This paper presents an algorithm to find such a pseudoforest in time O(m + n).

The pseudoforest problem relates to finding » minimum spanning tree. The best-known time
for finding a minimum spanning tree is O(m log f(m, n)) [GGST], where

B(m,n) = min{i|log¥) n < m/n}.

Here log denotes logarithm base two, and log{*) n is the ¢** iterated logarithm, defined by log(® n =
n, log{+!) n = log(log{) n). Note that if m/n 2 log(¥) n for some constant ¢ then f(m,n) < 1, s0
the time to find a minimum spanning tree is O(m). This paper presents a related result: If a graph
has girth at least log(*) n for some constant ¢ then a minimum spanning tree can be found in O(m)
time.

Section 2 presents the results. This section closes with definitions and background from graph
theory and data structures.

If S is a set and ¢ an element, S + ¢ denotes S U {¢} and S — ¢ denotes S ~ {¢}. For a graph
G, V(G) and E(G) denote its vertex set and edge set, respectively. Hence for the given graph G,
n = [V(G)| and m = |E(G)|. An edge ¢ is incident to a subgraph H if one or both ends is in V(H)
but ¢ ¢ E(H).

o % LN L LN LR L LY L LY Y % % te L LY L% L o e
Y S Y N e S e

A tree (pseudotree) component of a graph G is a connected component of G that is a tree
(pseudotree). A spanning pseudoforest P for a graph G cosists of every tree component of G, plus
for every other connected component C of G, one or more pseudotree components that partition
V(C). Note that P contains exactly [V(C)| edges of C.

The set merging problem [T is to maintain a collection of disjoint sets which, after initialization,
is subject to two operations:

unste(S,S')— form a new set SU S, thereby destroying sets S and S';

find(e)— return the name of the set containing element ¢.
The set merging algorithm used in Section 2 is union by sise: It represents each set S by a union
tree, i.c., a tree whose nodes are the elements of S. A snite makes the root of the smaller union tree
a child of the root of the larger. An operation find(v) is done by following the path in the union
tree from v to the root. (No path compression is done). Hence a snite operation is O(1) time and
find(v) is O(log), where s is the size of the set containing v.

In this paper a priority quese is a data structure on a universe that is partitioned into disjomt
queses, where each element has a real-valued cost, and after initialization the following operations
can be performed:

meld(Q,Q’)— form a new queue by combining Q and @, thereby destroying queues

. Q and ?'hé .

find_min(Q)— return the smallest cost element in queue Q;

delete(e,Q)— remove element ¢ from queue Q.
The algorithm used in Section 2 implements priority queues with Fibonacci heape [FT}. The follow-
ing .ime bounds hold: meld is O(1); find_-min(Q) is O(log s), where s is the size of Q; delete(e,Q)
is O(log s), where s is the sise of the Fibonacci tree containing e. Note these are amortized time
bounds. Also to achieve the bound for delete the algorithm of [FT] is modified slightly, making
it lazier: Unlike [FT] a queue does not keep track of its minimum element. Rather find.min(Q)
links trees of Q until there is at most one tree of each rank, and then finds and returns the desired
minimam. delete{e,Q) cuts ¢ from its parent and adds the children of ¢ to the list of trees of Q.
The analysis of [FT] easily extends to prove the above time bounds. (The same time bounds can
be achieved using binomial queues [Br] modified to do lagy melding).

2. The algorithm.

The algorithm is based on a locality property similar to one possessed by minimum spanning
trees {T].

O Ay e 4t SR # B SIS

b\ 'b':n(’- l- *

>

W DY P e W R R O U R NN S Y O Y

.

Lemma 2.1. Let P be a subgraph of a minimum spanning pseudoforest. Let ¢ be a smallest cost
edge incident to some tree component T of P. Then P + ¢ is a subgraph of a minimum spanning
peeudoforest.

Proof. Let P° be a minimum spanning pseudoforest containing P, and suppose P* does not
concain e¢. Let [be an edge of P* that is incident to T such that the component of P* ~ f
containing T is a tree (Specifically if T is in a tree component of P then f is an edge of P incident
toT;if T is in a pseudotree component with cycle C, then f is an edge of P incident to T on C
or on the path from T to C). By definition, ¢(¢) < ¢(f). Hence P* — f + ¢ is the desired minimum
spanning peeudoforest. §

The algorithm enlarges a subgraph P to a3 minimum spanning pseudoforest. For efficiency it
grows the components of P at approximately the same rate. More precisely let d(v) denote the
degree of vertex v in the given graph G; the (total) degree of a subgraph H is 3"{d(v){v € V(H)}.
The algorithm grows components so that they have similar degrees. The details are as follows.

The algorithm initializes P to contain every vertex v of G (v is initially a tree component of
P). It then repeats the following step as long as P contains a tree component with an incident
edge:

Enlarging Step. Choose a tree component T of smallest degree and add to P a minimum coet edge
incident to T

Correctness of this algorithm follows from the lemma; clearly peeudofor~+t P spans G when
the algorithm halts.

The enlarging step is implemented with the following data structures. A set merging data
structure maintains the partition of V(G) induced by the components of P. Each component of P
is marked as a tree or peeudotree. Each tree component T maintains its degree d(T'), and a priority
queue of incident edges Q(T'), ordered by cost. An edge can be in two priority queues, in which
case the two occurrences are linked by pointers. There is an array C[1..2m], where C|d] points to
a doubly-linked hist of all tree components of degree d with an incident edge.

With this data structure the enlarging step works as follows: The outermost loop examines
the entries in C in increasing order to find the next smallest tree component T. T is removed
from its C-list. The smallest edge ¢ in Q(T) is obtained using find_min. The set merging data
structure finds the two components containing the ends of ¢, say T and S. If S = T it is marked

3

S 2 L e =" P VAL WA o A S e W A S N AT Y N S TR S

L4 e
e

I, 7,

S5 % A 2

R

TR

&/

as a peeudotree. Iif S # T then sets V(S) and V(T') are united; further if S is a tree it is deleted
from its C-list, ¢ is deleted from Q(S) acd Q(T), these queues are melded, the new tree component
SUT gets degree § = d(s) + d(t) and is added to the list C[6] if its queue is nonempty. Finally in
all cases, ¢ is added to P.

To estimate the time, note that all initialization uses O(m+n) time. The time for all enlarging
steps, excluding priority queue find_mins and deletes and set merging finds, is O(m+1). To estimate
the time for find_mins, deletes and finds, define the rank of a component C as

r(C) = [log (C)).

A simple induction shows that when T is chosen in the enlarging step, the size of any Fibonacci tree
is at most d(T) (recall that find_msn is the only operation that enlarges Fibonacci trees; initially
every edge is in its own Fibonacci tree). A similar induction shows that when T is chosen the
height of the union tree for any component C is at most min{r(C),1+ #(T)} (since T"s height is at
most r(T')). Thus the find_min, find and two deletes for T take time O(log d(T') +r(T)) = O(r(T)).
Let T (+) denote the set of all rank r tree components chosen as T in the enlarging step. Then the
total find_min, delete and find time is at most a constant times

;rIT(f)!-

For any rank r, any edge is counted in the degree of at most two trees of T (r) (since the enlarging
step unites T into a peeudotree or increases the rank of the component containing T'). Hence
T{dT)T €T(r)) <2m. Any T € T(r) has d(T) 2 2'. Thus |T(r)] < m/2"=1. This implies the
total time is at most a constant times ¥ ooq rm/2"~! = O(m).

Theorem 2.1. A minimum spanning pseudoforest can be found in time O(m +n). 1

Now we tumn to the minimum spanning tree problem. Let P be a minimum spanning psendo-
forest. Form a set C by choosing 3 maximum cost edge from each cycle of P.

Lemma 2.2. P - C is a subgraph of » minimum spanning tree.

Proof. Let T be a minimum spanning tree with as many edges of P as possible. Suppose P - C
is not a subgraph of T. Let Q be a component of (P — C)N T that is not a component of P - C;
choose Q s0 it is not incident to an edge of C. Let ¢ be an edge of P incident to Q such that the
component of P - ¢ containing Q is a tree (¢ is found as m Lemma 2.1). Let f be an edge incident

4

AKX X

Ay

S AR ..

RS OOOND

« . v g .
e e =

Py

)

N
S

""""" . N et A e Al e . - -a = ey
O A A N N A S A N NN AN TR Tl G P AP vy

to Q in the fundamental cycle of e in T (/ exists since e ¢ TUC). Then P - ¢ + { is a spanning
peeudoforest, whence c(e) < ¢(f). T - f + ¢ is a spanning tree containing more edges of P than T,
whence ¢(f) < c(e). This contradiction proves the lemma. § Y,

The lemma justifies the following minimum spanning tree algorithm. Find a minimum spanning
peeudoforest P. Form the forest F by deleting a maximum cost edge from each cycle of P; form
the graph G’ by contracting each tree of F to a vertex. Find a minimum spanning tree T of G'.
Now T U F is a minimum spanning tree of G.

This algorithm improves the bound for minimum spanning trees in the following special case.
For the improvement it suffices to find T using the minimum spanning tree algorithm of [FT], which
uses time O(mp(m,n)) but is slightly simpler than [GGST). Recall the girth g of a graph is the .
length of a shortest cycle [H].

Theorem 2.2. Let G be a graph with girth g > log{*) n for some constant i. Then a minimum
spanning tree of G can be found in time O(m).

3

Proof. Except for finding T, the algorithm uses linear time. Let n' = [V(G')}, m' = |E(G")|, 2
so T is found in time O(m'S(m’,n')). Clearly n' < nfg and m’ < m. Note that mf(m,n) is an ;‘
increasing function of m (since f{m,n) < n and A(m + 1,n) 2 f(m,n) — 1). Hence m’B(m’,n’) < Z'
mpB(m,n’) < mB(m,n/g). Since m > n, f(m,n/g) < B(n,n/g) < B(ng,n). Since g 2 log®) n, 2
B(ng,n) < ¢ by definition. This gives the theorem. @ :
In conclusion, a minimum spanning tree can be found in linear time if the graph has density '

or girth at leas log") n. This narrows the open case down to graphs that are extremely sparse. o
3

N

!‘-

Acknowledgments. R
We thank David Shmoys for pointing out the applications of peeudoforests to networks. ’

;

5 :

o

3

o T o E LU I £ B2 o b PP

['J- rp

[Be]
[Br]

(D]

[FT]

[GGST]

[GPS]

=
[BK]

L]

[ME]

[PQ]

References.

C. Berge, Graphs, 284 revised edition, North-Holland, New York, 1985.

M. R. Brown, “Implementation and analysis of binomial queue algorithms®, SIAM J.
Comput. 7, 3, 1978, pp. 298-319.

G.B. Dantzig, Linear Programming and Estensions, Princeton Univ. Press, Princeton,
N.J., 1963.

M.L. Fredman and R.E. Tarjan, “Fibonacci heaps and their uses in improved network
optimization algorithms®, Proc. £5tA Annuel Symp. on Found. of Comp. Secs., 1984,
Pp.338-346; also J. ACM, to appear.

H.N. Gabow, Z. Galil, T.H. Spencer and R.E. Tarjan, “Efficient algorithms for finding
minimum spanning trees in undirected and directed graphs®, Combsnatorics 6, 2, 1986,
pp. 109-122.

A. V. Goldberg, S.A. Plotkin, G.E.Shannon, “Parallel symmetry-breaking in sparse
graphs®, Proc. 19 Annwel ACM Symp. on Theory of Comp., 1987, pp. 315-324.

F. Harary, Graph Theory, Addison-Wesley, Reading, Mass., 1969.

M. Held and R. M. Karp, “The traveling-salesman problem and minimum spanning
trees”, Oper. Res. 18,1970, pp. 1138-1162.

E.L. Lawler, Combinatorial Optimszation: Networks and Matrosds, Holt, Rinehart and
Winston, New York, 1976.

S. Mitchell and S. Hedetniemi, *Linear algorithms for edge-coloring trees and unicyclic
graphs®, Inf. Proc. Letters, 9, 3, 1979, pp. 110-112.

J.-C. Picard and M. Queyranne, “A network flow solution to some nonlinear 0-1 pro-
gramming problems, with applications to graph theory®, Networks, 12, 1982, pp. 141.
159.

R.E.Tarjan, Dats Structures end Network Algorithms, SIAM Monograph, Philadelphia,
Pa., 1983,

H.H. Westermann, “Efficient algorithms for matroid sums®, Ph. D. Dissertation, Dept.
of Comp. Sci., Univ. of Colorado, in preparation.

N. White and W. Whiteley, “The algebraic geometry of motions of bar-and-body frame-
works®, SIAM J. Alg. Dusc. Meth. 8, 1, 1987, pp. 1-32.

£4

- -

.sf'Ifl"-

e
i

[
Py

T T Pl
220

y Wy 4 N
o] ‘.'- >

v
27

Vi ST

"\'.'.".V‘ -, :."'n)’ ’\ "-) 2" {

e

A

W e

b s
A of
h '\-I\\\v K o P
I 2 e T

e
h.pwm. AL

Uy dig pig pVp &
-
“ﬁh?ﬂ
~ \.,\'_\
A ALY

L J
oy
=

o
\
o~
Nt

FAD
DATE

'}~
o,
o,

-
e ®
s
-
KN
0
v W

.
-
-~
-

o
-~
>
0
.'\

-
)
Yol
~
o
>

“Bod 9,

“!.

s

:

T W

; Vil
hd » TM)&I

2 g
)”n -' -' \ 5
b ey
% » z...r »f\f
o LhS

- W«x\.
i MWJ.,..-:
A s
.c.n... ' rn-) $I¢
5 y >,
= ; v LA
A, o R DOCRBRG T TR Gl T n ARSI T A AEL @ NN N WP LLL ey o bk

